skip to main content


Search for: All records

Creators/Authors contains: "Kim, Jeonghyun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract Capabilities for continuous monitoring of pressures and temperatures at critical skin interfaces can help to guide care strategies that minimize the potential for pressure injuries in hospitalized patients or in individuals confined to the bed. This paper introduces a soft, skin-mountable class of sensor system for this purpose. The design includes a pressure-responsive element based on membrane deflection and a battery-free, wireless mode of operation capable of multi-site measurements at strategic locations across the body. Such devices yield continuous, simultaneous readings of pressure and temperature in a sequential readout scheme from a pair of primary antennas mounted under the bedding and connected to a wireless reader and a multiplexer located at the bedside. Experimental evaluation of the sensor and the complete system includes benchtop measurements and numerical simulations of the key features. Clinical trials involving two hemiplegic patients and a tetraplegic patient demonstrate the feasibility, functionality and long-term stability of this technology in operating hospital settings. 
    more » « less
  2. Abstract

    This paper describes deterministic assembly processes for transforming conventional, planar devices based on flexible printed circuit board (FPCB) platforms into those with 3D architectures in a manner that is fully compatible with off‐the‐shelf packaged or unpackaged component parts. The strategy involves mechanically guided geometry transformation by out‐of‐plane buckling motions that follow from controlled forces imposed at precise locations across the FPCB substrate by a prestretched elastomer platform. The geometries and positions of cuts, slits, and openings defined into the FPCB provide additional design parameters to control the final 3D layouts. The mechanical tunability of the resulting 3D FPCB platforms, afforded by elastic deformations of the substrate, allows these electronic systems to operate in an adaptable manner, as demonstrated in simple examples of an optoelectronic sensor that offers adjustable detecting angle/area and a near‐field communication antenna that can be tuned to accommodate changes in the electromagnetic properties of its surroundings. These approaches to 3D FPCB technologies create immediate opportunities for designs in multifunctional systems that leverage state‐of‐the‐art components.

     
    more » « less
  3. Development of unconventional technologies for wireless collection and analysis of quantitative, clinically relevant information on physiological status is of growing interest. Soft, biocompatible systems are widely regarded as important because they facilitate mounting on external (e.g., skin) and internal (e.g., heart and brain) surfaces of the body. Ultraminiaturized, lightweight, and battery‐free devices have the potential to establish complementary options in biointegration, where chronic interfaces (i.e., months) are possible on hard surfaces such as the fingernails and the teeth, with negligible risk for irritation or discomfort. Here, the authors report materials and device concepts for flexible platforms that incorporate advanced optoelectronic functionality for applications in wireless capture and transmission of photoplethysmograms, including quantitative information on blood oxygenation, heart rate, and heart rate variability. Specifically, reflectance pulse oximetry in conjunction with near‐field communication capabilities enables operation in thin, miniaturized flexible devices. Studies of the material aspects associated with the body interface, together with investigations of the radio frequency characteristics, the optoelectronic data acquisition approaches, and the analysis methods capture all of the relevant engineering considerations. Demonstrations of operation on various locations of the body and quantitative comparisons to clinical gold standards establish the versatility and the measurement accuracy of these systems, respectively.

     
    more » « less
  4. A class of ferromagnetic, folded, soft composite material for skin‐interfaced electrodes with releasable interfaces to stretchable, wireless electronic measurement systems is introduced. These electrodes establish intimate, adhesive contacts to the skin, in dimensionally stable formats compatible with multiple days of continuous operation, with several key advantages over conventional hydrogel‐based alternatives. The reported studies focus on aspects ranging from ferromagnetic and mechanical behavior of the materials systems, to electrical properties associated with their skin interface, to system‐level integration for advanced electrophysiological monitoring applications. The work combines experimental measurement and theoretical modeling to establish the key design considerations. These concepts have potential uses across a diverse set of skin‐integrated electronic technologies.

     
    more » « less